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Physics constraints on brain activity mapping

< 2C temperature change:
—» < 50 mW steady-state power dissipation
< | % tissue volume displacement

A) Electrical B) Optical a

Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors http://arxiv.org/abs/1306.5709


http://arxiv.org/abs/1306.5709

What’s wrong with the electrode?

® Only a single recording site

® Hard to record from many
neurons at once




How far can an electrode see?

100-200 um max recording radius
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Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors [Neuron/Matlab simulation based on Gold and Koch]



How far can an electrode see?
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o signal size ~ 100-1000 uv
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rmax ~ 130 um noise from other neurons

data: Berry lab, Princeton
Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors



How far can an electrode see?

750k -7.5M electrodes for 75M mouse neurons

current spike sorting algorithms: < |0 neurons / electrode
information theory estimate: < 100 neurons / electrode
estimate from max recording radius: < 1000 neurons / electrode

Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors



Simplest solution: many electrode pads

—— Unit 1

Front side —— Unit 2

ms Shaft 1 Shaft 2

Back side

Shaft 2 Shaft 1

25 um

® Must route many electrical traces (wires) to access many neurons

® # of traces that must be routed onto same shank scales with length of probe

® (I mm/ 20 um) = 50 traces
® (10 cm /20 um) = 5000 traces

® 50 um shank width / 5000 traces = 10 nm per trace

® Fabrication

® |mpedance

Du et al (2009)



0.05mm

Physics constraints on brain activity mapping

50 um!

wirelessly-powered RFID chip

> |0 p] per transmitted bit

x 100 Gbit/sec = IW

128-bit Memory (21pm x32pum)

need at 2-3 orders of magnitude improvement

in power efficiency of electronics
to use embedded chips for whole-brain recording

Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors



Physics constraints on brain activity mapping

_ power limits on switching elements
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Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors



Physics constraints on brain activity mapping

power limits on data transmission
Frequency (Hz)
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Workarounds:
Seo et al
store data locally and read out slowly —~

use ultrasound or infrared/visible light rather than RF / microwave transmission

Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors



What if we could multiplex
many signals into a single very thin
“wire” without separate traces!



Locating defects in long optical fibers
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Locating defects in long optical fibers

optical reflectometry

Input reflection

A)\t End reflection
; A

| | 3| Noise
Splice or connection M,

Time (directly related to distance)
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>

http://www.fibercore.com/medialibrary/images/english/6360.jpg


http://www.fibercore.com/mediaLibrary/images/english/6360.jpg

Locating defects in long optical fibers

Luna’s Optical Backscatter Reflectometer™ (OBR) delivers unprecedented inspection and
diagnostic capabilities for the fiber optics industry. Luna’s state-of-the-art OBR provides
isolation of faults and problems well before final test, saving hours in rework and hard
dollars in yield loss. Industry-leading 1 Oﬁrh»icir,on spatfialr resOIutionﬁwith zero dead-zone will
pinpoint even the smallest contributors to loss: bend's,f crimps, bad splices, you name it —
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Fontaine 1981 Localization of a weak discontinuity by TDR
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Journal of Biomedical Optics 21(5), 057003 (May 2016)

Multiplexed neural recording along a single optical
fiber via optical reflectometry
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Coupling electric field to optical reflection coefficient in fiber

Pockel’s effect: change in refractive index driven by E field
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https://www.ntt-review.jp/archive _html/200912/images/sf3 fig05.gif



https://www.ntt-review.jp/archive_html/200912/images/sf3_fig05.gif

Comparison with standard electro-optic modulators:

them us
~5V ~5V / 10> = microvolts
Switch at GHz Switch at GHz / 1075 = kilohertz
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Micrometre-scale silicon electro-optic modulator

Qianfan Xu', Bradley Schmidt', Sameer Pradhan' & Michal Lipson’
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Optical shot noise in the reflected signal limits sensitivity
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Need a very large capacitance
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Minimal test system

Doping levels given in cm”?{-3}
X =500nm, 1um, 2um.

SrTiOo3 X

Si 500nm
10717

Si0 X

Si

with Supratik Guha, Sam Rodriques, Deblina Sarkar, Jorg Scholvin, Ed Boyden
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Thank you! Please read:
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Front. Comput. Neurosci., 21 October 2013 |
https://doi.org/10.3389/fncom.2013.00137

Physical principles for scalable
neural recording

ﬁ Adam H. Marblestone'?*t, Bradley M. Zamft3t, ¢ Yael G.
Maguire34, f‘ Mikhail G. Shapiro>, Thaddeus R. Cybulski®,

Joshua l. Glasers, Dario Amodei’, © P. Benjamin Stranges?, Reza
Kalhor3, © David A. Dalrymple!’89, Dongjin Seo'?, Elad Alon?0,
:'l Michel M. Maharbiz!°, Jose M. Carmenal®l, Jan M. Rabaey'?,

Edward S. Boyden?®12#, E George M. Church!23* and 9, Konrad P.
Kording!314+



